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Abstract

We analyze a dynamic moral hazard problem in teams with imperfect monitoring
in continuous time. In the model, players work together to achieve a breakthrough in
a project while facing a deadline. The e�ort needed to achieve a breakthrough is un-
known, but players have a common prior about its distribution. This makes the model
very �exible since the distribution over the required e�ort for a breakthrough can model
di�erent types of projects.
We characterize the equilibrium and the welfare-maximizing e�ort path for general dis-
tributions of this breakthrough e�ort and show that three e�ects are at work: free-riding
(i.e., working less), delay of e�ort (i.e., working later), and an encouragement e�ect (i.e.,
working more if others worked more in the past). This encouragement e�ect increases
or decreases the amount of work players put into the project, depending on the type of
uncertainty faced.
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1. Introduction
This paper analyzes a dynamic moral hazard problem in teams who work on a project with
imperfect monitoring in continuous time. In addition to a deadline, the team faces uncertain
objectives, i.e., they don’t know how much work is needed to complete the project.

Working in projects, i.e., working together towards a �xed goal after which your team will be
terminated, is not only the most common way of working in consulting �rms but is getting
more and more common in most workplaces (Harvard Business School Press (2004)) and even
in the classroom (Hutchinson (2001)).

In this paper, projects have uncertain requirements or changing objectives, which are, un-
fortunately, quite common.1

We show how di�erent types of uncertainty in a project’s requirements a�ect the players’
behavior.

The main features of this model are:

• public bene�ts, which are realized upon completion of a project in the form of a
lump-sum payment,

• private costs, which are assumed to be quadratic,
• an unknown threshold for success or uncertain requirements, with a commonly

known distribution, which we will call breakthrough-e�ort distribution,
• unobservable e�orts, so only the player’s own e�ort is known,
• and a deadline, after which the team can not complete the project anymore.

In the model, the players exert e�ort over time until the deadline is reached or the project
is successful. While doing so, they only know that they have not been successful yet. A
project is successful when an unknown breakthrough e�ort threshold is reached, which is
perceived as random by the players. Projects in this model are described by the assumed
distribution of the breakthrough e�ort. This breakthrough-e�ort distribution can cover many
di�erent projects, e.g., projects in which only the current e�ort in�uences the probability of
success or projects during which players learn about the quality of the project while trying
to complete it. One simple example of a breakthrough-e�ort distribution is the uniform
distribution on [e, e]. This means that the players think that the project needs e�ort between

1According to a survey by Taylor (2000) unclear objectives and requirements are the most common cause for
failure of IT projects.
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e and e to be completed. For examples of di�erent types of projects and the corresponding
breakthrough-e�ort distributions, see Appendix C.

While this breakthrough-e�ort distribution can cover many di�erent types of uncertain re-
quirements, the uncertainty is always about the amount of e�ort players have to exert to suc-
ceed. As everyone knows that they have been successful as soon as enough e�ort was spent,
uncertainty is resolved entirely at that point. Thus, there is never uncertainty if enough e�ort
has already been provided (i.e., the question of “Have I studied enough to pass the exam?”
can not be answered by this model) and hence no over-provision of e�ort.

We �nd that there are three di�erent e�ects at work in the equilibrium: free-riding, which
reduces the overall e�ort the more players are working on the project. The second e�ect is
encouragement, which depends on the threshold distribution: Given a decreasing hazard
rate, my own e�ort encourages the other players to work less, while given an increasing
hazard rate, my work encourages my coworkers to work more in the future.2 The last e�ect
is delay of e�ort, which causes players to work later rather than earlier, even with the pres-
ence of a discount rate, which lets players want to have a breakthrough as soon as possible.3

The encouragement e�ect in this model allows us, due to the very general project structure,
to show the in�uence of project types on strategic behavior. We observe that certain types
of projects lead to a positive encouragement e�ect, i.e., that my work encourages others to
work more. In contrast, other types of projects lead to a negative encouragement e�ect. This
positive encouragement e�ect is very similar to strategic complementarity and the negative
encouragement e�ect to strategic substitutability.
Delay of e�ort as a result of rational players has not been analyzed before in this context. In
this model, the delay is caused by convex costs, a deadline, and uncertainty about the e�ort
required for a breakthrough. It causes players to shift e�ort towards the end, despite having
a strong incentive to �nish the project early. While it is not a strategic e�ect, it gives insights
into a team’s optimal behavior when there is a deadline.

This paper’s main contribution is that we allow for unknown e�ort requirements, which are
not limited to a particular form, thus allowing us to describe di�erent projects just using the
prior about the requirements.

2The hazard rate can be described as the e�ect of past e�ort on the e�ectiveness of the current e�ort.
3This e�ect is more than just a consequence of discounting, as the discount rate does a�ect not only the costs

but also the bene�ts. As the bene�ts are, by design, later than the costs and higher than the expected costs,
a discount rate lets players work earlier, not later.
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Our results also have implications on the evaluation of projects: As we observe a last-
minute rush even in the equilibrium e�ort as well as in the welfare-maximizing solution,
we know that delaying e�ort might not only be a rational consequence of unclear objectives
but welfare-maximizing.
Furthermore, while some classes of uncertain objectives have a discouragement e�ect and
lower the overall e�ort workers spent, others have an encouragement e�ect and might help
complete a project that would otherwise not have been completed.

The paper is organized as follows: In the next section, I will give an overview of the relevant
literature and how this work �ts into it. In Section 3, I will explain the model. In Section 4, I
derive the optimal e�ort for the non-cooperative and the welfare-maximizing case and show
that three e�ects are at work: free-riding, encouragement, and delay of e�ort. Finally, I will
give some concluding remarks in Section 5.

2. Comparison to the Literature
This paper is related to di�erent �elds of the literature: Holmstrom (1982) started the game-
theoretic literature on moral hazard in teams. A common theme in this �eld is the focus
on free-rider problems due to shared rewards but costly private e�ort. My paper adds to
this literature as it analyzes a dynamic moral hazard problem, in which players have very
restricted information about the actions of others, which leads to free-riding and a delay of
e�ort.

This model is also related to the literature on strategic experimentation as it models the behav-
ior of players who optimize their decisions while gathering information at the same time. In
these games, players have to divide time between a “safe” and a “risky” action (as in the arms
of a two-armed bandit) with unknown but common payo�s. Bolton and Harris (1999) ana-
lyzes a two-armed bandit problem with many players in which the arms yield payo�s, which
behave like a Brownian Motion, with di�erent drifts for the safe and the risky arm. They
characterize the unique symmetric Markov Perfect equilibrium and can identify free-rider
and encouragement e�ects. In Keller, Rady, and Cripps’s (2005) model of strategic experi-
mentation, the risky arm yields a lump-sum with a certain intensity if the risky arm is good
and nothing if the risky arm is bad, new information arrives as a Poisson process, as in most
of the recent literature on bandit problems.4

4A notable exception of this is Boyarchenko (2017), in which Erlang bandits are used.
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My work is closely related to Bonatti and Hörner (2011). They analyze a bandit model, similar
to Keller, Rady, and Cripps (2005), in which e�orts are private information and only outcomes
are observable. After success, the game ends, and payo�s are realized.
The model presented in this paper is a very particular model of strategic experimentation:
Not only is the information a player gathers about the actions of the other players very
restricted, but furthermore, players’ payo�s are perfectly correlated. However, strategic ex-
perimentation models usually assume the news arrival to be a Poisson process, whereas my
model has hardly any restriction on this news arrival process.

Bonatti and Hörner (2011) exempli�es another strand of literature which this paper is re-
lated to: dynamic contribution games. Already suggested by Schelling (1960), these models
analyze the dynamic contributions to public goods. However, unlike in this paper, most pa-
pers in this literature either have directly observable contributions (e.g., Admati and Perry
(1991) and Lockwood and Thomas (2002)). Others have an information structure that al-
lows deviations from an equilibrium path to be either directly or indirectly observed (e.g.,
Marx and Matthews (2000)) and thus allow for trigger strategies which are (close to) welfare-
maximizing. In the closely related Georgiadis (2014), there is uncertainty about how e�ort
a�ects the provision of the public good. He assumes that e�ort a�ects the drift of a standard
Brownian motion towards a (commonly known) threshold and can identify free-riding and
encouragement e�ects and show that the optimal contract only compensates for success.
Although in my paper, the uncertainty is about the threshold and not about the e�ect of
e�ort, the two models are closely related when hazard rates are increasing (see, for example,
Example 3). Even closer to this work is Georgiadis (2017), in which he uses a similar model
to analyze the e�ect of monitoring on public good provision. While being very similar in
the case without monitoring, his paper explores how even infrequent monitoring can lead to
�rst-best behavior. In contrast, we do not allow monitoring and explore the e�ect of di�erent
types of projects. This paper introduces uncertainty about the e�ort needed to provide the
public good. Therefore, players also have to incorporate information gathering into their
decision process. Furthermore, we show that, due to the presence of a deadline, delaying
e�ort is optimal.

There is a vast literature on procrastination in economics and psychology. However, these
works usually attribute procrastination or delayed e�ort to self-control problems (O’Donoghue
and Rabin (2001)) or time-inconsistencies like hyperbolic discounting (Laibson (1997)). An-
other explanation for procrastination is given by Akerlof (1991): According to him, procrasti-
nation is a consequence of “repeated errors of judgment due to unwarranted salience of some
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costs and bene�ts relative to others“ (Akerlof, 1991, p. 3). A notable exception is Weinschenk
(2016), in which players also have an incentive to delay their e�ort, which can be avoided by
committing to discriminatory contracts.
The literature on procrastination in psychology is even more prominent than in economics
but, like the economic literature, it almost exclusively focuses on some form of cognitive
biased decisions (e.g., Wolters (2003) or Klingsieck (2015)).
This paper adds to this literature as it models not only the decision processes of a single per-
son but also delayed e�ort in teams, i.e., in a game-theoretic model. Furthermore, it explains
observed procrastination as rational and even welfare-maximizing behavior and gives rise to
entirely di�erent measures that should (or should not) be taken.

Bergemann and Hege (2005) uses a very similar information structure to the one presented
in this paper but analyzes a problem in discrete time with linear costs and a memoryless in-
vestment. Second, Khan and Stinchcombe (2015) analyze decision problems in which changes
can occur at random times and require a costly reaction. They have identi�ed situations in
which a delayed reaction is optimal, depending on the hazard rate of the underlying chang-
ing probability distributions. This model’s relationship to the latter paper is mostly in the
use of the hazard rate as a description of the projects players are working on.

To summarize, this paper contributes to the literature in two di�erent ways: On the one
hand, it provides a tractable model to analyze a very general class of dynamic contribution
games in continuous time with many players and incomplete information about e�ort con-
tribution. Due to the information structure, we also do not have an equilibrium selection
problem. On the other hand, the model can explain the e�ects of very di�erent types of
projects: Projects in which the success probability decreases in e�ort already spent,5 e.g.,
through learning about the quality of the project (which is very common in bandit models),
investment projects similar to Georgiadis (2014, 2017) where the past e�ort increases the
chance of success now and even projects in which past e�ort increases the chance of success
on some intervals and decreases on others.

In addition to this, we were able to identify a strategic encouragement e�ect which can be
bene�cial or harmful to the e�ort put towards the project’s goal, depending on the type of
uncertainties the players are facing. A comparison to the di�erent encouragement e�ects in
the literature is made in Section 4.4.

5Covered by decreasing hazard rates of the breakthrough e�ort distribution.
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3. The Model
Consider n risk-neutral players working together on a project in continuous time t ∈ [0,T ],
discounting all future payo�s and costs at rate r > 0 and with a �nite deadlineT . We assume
that players can only observe their own past e�ort and whether the project was successful,
i.e., they can not observe the other players’ e�ort or the overall e�ort spent so far. When
successful, the players get a lump sum payment, normalized to 1, and the game ends.

A strategy ai of a player i is a measurable function ai : [0,T ] → R+, i.e., how much e�ort a
player spends at every point in time, given that the project was not successful at this time.
E�ort is costly, and players are assumed to have quadratic instantaneous costs of e�ort cai(t)2,
with c > 0 at every point in time t .

If the project was not successful before the deadline, T the game ends, and the project can
never be completed.

The utility function of player i is, given a breakthrough at time t̄ < T , therefore given by

Ṽi(ai , t̄) = re
−rt̄ − r

t̄∫
0

e−rtcai(t)
2 dt

or, if there is no breakthrough before T , by

Ṽi(ai) = −r

T∫
0

e−rtcai(t)
2 dt .

We can see two parts of the utility function here: the �rst part is the lump sum payment,
which occurs only once at time t̄ and is therefore discounted by re−rt̄ . The second part is the
cost cai(t)2 which occurs at every point in time (and depends on the e�ort ai(t)) up until t̄ .
The project is successful at time t̄ if the players have accumulated enough e�ort, i.e., more
or equal than the threshold x̄ :

De�nition 1 (E�ort Threshold). The project is successful at t̄ if the players have exerted
enough e�ort to reach the threshold x̄ , i.e.

t̄ = inf
t ′ ∈ [0,T ]

������ x ≤
t ′∫

0

n∑
i=1

ai(t) dt

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This de�nition implies the assumptions of symmetric, additively separable, and linear e�ects
of e�orts and non-depreciation of e�ort.

The threshold x is drawn before the game and is unknown to all players. They have a com-
mon prior about its probability density function f and hence, about its cumulative distribu-
tion function F and hazard rate h = f

1−F .

Remark (The hazard rate and projects). This breakthrough-e�ort distribution and its hazard
rate can be interpreted as the type of a task or project. A project with an increasing hazard rate
has a higher chance of being completed the more work already has been put into it (e.g., with
learning-by-doing) and vice versa for a decreasing hazard rate. Prior e�ort does not in�uence a
project with a constant hazard rate.
Due to the �exibility of the breakthrough-e�ort distribution, it can incorporate other e�ects
as well; for example, certain types of stochastic project progress or non-deterministic e�ects of
e�ort. However, throughout this paper, we will stay with the interpretation of a �xed e�ort
threshold and the simple deterministic e�ort-project progress relation. For more information on
the breakthrough-e�ort distribution and its interpretation as projects, see Appendix C).

Due to De�nition 1 we can de�ne x(t) =
t∫

0

∑
i
ai(s) ds as the overall e�ort already spent up

until time t and we can set the initial e�ort x(0) to 0. Furthermore, a−i(t) =
∑
j,i

aj(t) is de�ned

as the e�ort of all players except i at a certain time t .

Therefore, we now know the time t̄ at which the project is completed, given an e�ort pro�le
{ai ,a−i}:

t̄ = inf
t ≥ 0 :

t∫
0

n∑
i=1

ai(t) dt ≥ x̄


To derive the expected utility, as stated in Equation (1), one has to take the expectations of
Ṽ with respect to t̄ . For a detailed derivation please refer to Appendix A.1.

Vi (ai(t),a−i(t),x(t)) = r

T∫
0

e−rt (1 − F (x(t)))


f (x(t))

(∑
j
aj(t)

)
1 − F (x(t))

− cai(t)
2


dt (1)
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The expected utility has an intuitive interpretation: The factor in front of the squared brack-
ets (1 − F (x(t))) gives the probability that we had no success before time t or, in other words,
that we reach time t . The two terms in the squared brackets give us the updated belief of the
players about having success at time t , given e�orts aj of every player, minus the costs they
have to bear.

An increase of instantaneous e�ort has di�erent e�ects on the utility of the players: An
increase in instantaneous e�ort increases the chance to win right now (via

∑
j
aj(t)) but also

increases the instantaneous costs cai(t)
2. Furthermore, it increases x and thus gives us a

chance to end the game right now and neither being able to win nor having to pay any
costs in the future (via the (1 − F (x(t)) in front of the squared brackets). Finally, spending
e�ort right now changes the chance of winning in the future (conditional on reaching the
future) by changing the e�ect of e�ort in the future f (x(t))

1−F (x(t)) . Unlike the e�ects described
before, this e�ect can go in di�erent directions: e�ort right now might improve or worsen
the e�ectiveness of e�ort in the future.

4. Results

4.1. Non-Cooperative Solution

The best response of player i to the strategies of the other players a−i(t) can be stated as the
following optimal control problem (omitting the time index t from x(t) and ai(t)):

max
ai

Vi = r

T∫
0

e−rt (1 − F (x))
(
f (x)(ai + a−i)

1 − F (x)
− ca2

i

)
dt (2)

with boundary condition x0 = 0 for the cumulative e�ort at time 0.

The following assumption restricts our attention to continuous distributions for which there
is neither a certain success nor a certain failure.

Assumption 1. The hazard rate of the breakthrough-e�ort distribution h(x) := f (x)
1−F (x) > 0

is continuously di�erentiable in x and bounded above for every �nite x .

Assumption 1 includes a few necessary restrictions on the distribution function to ensure
that the optimal control problem, which we have to solve to �nd the best responses, be-
haves nicely. The three main parts are h(x) > 0, which makes sure that even small amounts
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of work have a positive probability of yielding a success, continuously di�erentiability and
boundedness of h(x) and therefore f (x).

Note that the assumption explicitly allows for probability mass points at∞, i.e., that a project
might never be successful, independently of the amount of work that the players put into it.

Using this assumption, we can �nd the unique symmetric Nash equilibrium:

Theorem 1 (Equilibrium E�ort). Given Assumption 1, there exists a unique symmetric Nash
equilibrium in pure strategies in which, on the equilibrium path, the individual e�ort of a
player a evolves according to

Ûa =
2n − 1

2
h(x)a2 + ra −

r

2c
h(x) (3)

and reaches aT = 1
2ch(xT ) at the deadline T .

To �nd this equilibrium e�ort path, we use the Pontryagin maximum principle to solve the
optimal control problem given by Equation (2) and then use symmetry to �nd a candidate
for the equilibrium e�ort. Then we show that the path found by the Pontryagin maximum
principle always exists and is unique.

To show su�ciency of the solution, we, unfortunately, can not use the “standard” su�ciency
conditions (i.e., global concavity or Arrow/Mangasarian su�ciency conditions) due to the
general breakthrough-e�ort distribution f (x).

However, we can show that a global maximizer always exists through a Tonelli-type existence
theorem. Furthermore, using a result from optimal control theory, we can show that every
maximizer has to be a Pontryagin extremal (i.e., must be one of the candidates we have found
above).6

Now, we know that a global maximizer exists, that every maximizer has to be a Pontryagin
extremal, and that there is only one Pontryagin extremal. Therefore, we know that our
Pontryagin extremal has to be the unique global maximizer of our problem and is, therefore,
the unique symmetric Nash equilibrium.

6To people familiar with optimal control problems, this might be surprising. While we are using a result from
optimal control theory to show this, the main reason for this is that we have excluded boundary arcs due to
the assumptions. An intuitive interpretation for this is that due to the boundedness and continuity of h(x),
the value of additional e�ort is bounded, whereas the costs are not.
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Remark. Every Nash equilibrium is due to the game’s information structure, sequentially ra-
tional, and a Perfect Bayesian equilibrium (for some beliefs, e.g., the correct ones). At every point
in time, every player can only choose an action at exactly one information set.

Remark (Asymmetric equilibria). While there might be many asymmetric equilibria, we are
only considering symmetric equilibria in this paper. Given the symmetric setting and the infor-
mation structure, restricting our attention to symmetric equilibria seems natural. Furthermore,
every welfare maximizing solution to the problem is, due to the quadratic costs, symmetric (see
Section 4.2).

In the following, we are going to focus our attention on equilibrium behavior. However, let
me brie�y discuss an idea of the o�-equilibrium behavior that arises if one player deviates
from the equilibrium path. If she exerts less e�ort at time t , her continuation strategy after
t depends on the hazard rate of the underlying breakthrough e�ort distribution:

• Given a constant hazard rate, nothing changes for her. In this special case, the be-
havior is independent of the past; hence she will immediately revert to the equilibrium
e�ort.

• Given an increasing hazard rate, her belief about the probability of success is now
lower than that of her collaborators. Therefore, she will also exert less e�ort in the
future. Given a steep enough slope of the hazard rate, this leads to divergence of her
belief (and therefore e�ort).

• Given a decreasing hazard rate, her belief about the probability of success is now
higher than that of her collaborators. This leads to a higher e�ort until her belief
coincides again with the other players’ beliefs, as soon as she has made up the e�ort
she previously failed to exert. So, given enough time, in this case, the player will revert
to the symmetric equilibrium.

Using Theorem 1, we can show that e�ort is increasing over time for certain types of projects
and if there is no discounting.

Proposition 1 (Increasing E�ort). The equilibrium e�ort is increasing everywhere for non-
decreasing hazard rates and decreasing hazard rates if the discount rate r is 0.

For the proof, see Appendix A.3.
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Figure 1: Equilibrium e�ort: Decreasing hazard rate

However, suppose the project has a decreasing hazard rate. In that case, the e�ort might also
be decreasing (see for example Figure 1).7

4.2. Welfare-Maximizing Solution

To solve the problem of the social planner, we have to solve a problem similar to Equation (2).
However, now we maximize the combined utility and therefore:

max
ai

Vi = r

T∫
0

e−rt (1 − F (x)) ©­«n
f (x)(

∑
i
ai)

1 − F (x)
−

∑
i

ca2
i
ª®¬ dt (4)

We can focus on the symmetric problem in which every player exerts ā(t) without loss of
generality, as the following Lemma shows us.

Lemma 1. Every welfare-maximizing e�ort path has to be symmetric.

The intuition for Lemma 1 is as follows: Due to the assumptions of symmetric and additive-
separable e�ects of e�orts (De�nition 1) and convex costs, an equal distribution of the e�orts
exerted at every point in time results in the same probability of success but a lower sum of
costs. For the proof, see Appendix A.4.

7Here, f (x) is an incomplete exponential distribution, i.e., an exponential distribution with rate parameter α
and a probability mass point at∞ of 1 − β .
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Figure 2: Nash equilibrium e�ort
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Figure 3: Welfare-maximizing e�ort

Therefore we get the social planners optimization problem

max
ā

Vi = r

T∫
0

e−rt (1 − F (x))
(
f (x)(n2ā)

1 − F (x)
− ncā

)
dt (5)

And its solution which is derived in a similar fashion to Theorem 1 in Appendix A.5.

Proposition 2 (Welfare-Maximizing E�ort). In the social optimum, every player exerts an
e�ort which evolves according to

Ûa =
1
2
h(x)a2 + ra −

nr

2c
h(x)

and reaches aT = n
2ch(xT ) at time T .

One might suspect that the welfare-maximizing solution is to always exert more e�ort than in
the equilibrium. While this can be observed with an increasing or a constant hazard rate, it is
not true for decreasing hazard rates, as shown in Figures 2 and 3 (which uses the incomplete
exponential distribution with success rate α and failure rate 1 − β). Here we can see that
the welfare-maximizing e�ort starts o� being higher (and the cumulative e�ort is always
higher). Due to the decreasing belief in the project’s success, e�ort decreases much faster
than in the equilibrium.

Proposition 3 (Comparison Between Equilibrium and Welfare-Maximizing E�ort Levels).

(a) The cumulative welfare maximizing e�ort x∗ is at least as high as the cumulative equi-
librium e�ort x at every point in time t .
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(b) The welfare-maximizing e�ort a∗ always starts higher than the equilibrium e�ort a but
might be overtaken by it later on.

(c) The welfare-maximizing e�orta∗ for a non-decreasing hazard rate is, near the deadline,
always higher than the equilibrium e�ort a.

For the proof see Appendix A.7.

4.3. Last-minute Rush

In reality, we often observe the so-called last-minute rush. While this is often contributed to
irrational behavior (e.g., procrastination), we also observe this model’s e�ect with rational
players.

De�nition 2 (Last-minute rush). Player i exhibits a last-minute rush if and only if ∃δ > 0
s.t. ai is increasing on [T − δ ,T ].

Given Theorem 1, we can show that a last-minute rush can be observed for every variation
of the model:

Theorem 2 (Last-minute rush). For every possible breakthrough-e�ort distribution that ful-
�lls Assumption 1, players delay their e�ort, as de�ned in De�nition 2, on the symmetric
equilibrium path.

For the complete proof see Appendix A.6.

Surprisingly, the last-minute rush is present for any breakthrough-e�ort distribution, even
when the hazard rate decreases sharply near the deadline.

We know that we have a last-minute rush in the equilibrium, but what about the social
optimum? The following proposition shows that we can expect a rational social planner to
delay e�ort.

Proposition 4 (Last-minute rush of the social planner). For every possible breakthrough-
e�ort distribution that ful�lls Assumption 1, the social planner delays the e�ort, as de�ned
in De�nition 2.

The proof of Proposition 4 is analogous to the proof of Theorem 2.
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Corollary (Comparison of the cooperative and non-cooperative last-minute rush). For non-
decreasing hazard rates, we can compare the last-minute rush between the cooperative and
non-cooperative last-minute rush:

1. ∃δ : a∗ > a ∀t ∈ [T − δ ,T ]
2. ∃δ : Ûa∗(t) > Ûa(t) ∀t ∈ [T − δ ,T ]

We can see that the last-minute rush is not only something that also occurs in the welfare-
maximizing solution. For non-decreasing hazard rates, it is even stronger, at least in absolute
terms.

On the other hand, the increase towards the end might even be smaller for decreasing hazard
rates. This is not surprising, as a decreasing hazard rate means that the more e�ort was put
into the project already, the lower the chance of future success, given the same future e�ort.
With the result above, it is easy to imagine a case in which the chance to succeed in the
cooperative solution is very close to zero and much higher in the non-cooperative solution.

4.4. Free-Riding, the Encouragement E�ect and Delay of E�ort

In this part of the paper, we will see the three e�ects driving the behavior in this model:
free-riding, the encouragement e�ect, and delay of e�ort.

Free-riding, i.e., the e�ort level is ine�ciently low due to externality problems, has two
causes in this model: One is that my e�orts have a positive externality on other players’
payo�s (which can be seen in Equation (1)) and that e�orts are strategic substitutes, i.e.,
as I know that the other players will also work, I will work less (for a proof that e�orts
are strategic substitutes at every point in time see Appendix A.8). This leads to lower than
optimal (i.e., welfare-optimizing) e�orts, which we have already seen in Proposition 3.

However, my e�ort does a�ect not only the instantaneous e�ort choice of the other players
but also the perceived e�ectiveness of e�ort for every player in the future and therefore their
choice of e�ort indirectly.8 We call this e�ect encouragement e�ect, as players might exert
more e�ort for a given belief level as their e�ort might encourage others to exert more e�ort

8As players can not observe the cumulative e�ort directly in this game, the e�ect works via the beliefs of the
players: In the equilibrium, I have a correct belief about x , which in�uences my decision.
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in return. While free-riding is a well-known e�ect, the encouragement e�ect is, while related
to similar e�ects in the literature, new.9

Formally, we de�ne it as the change of the best responses to the past e�ort, i.e., as ∂a
∗
i (·)

∂x(t) . This
captures the idea of “One player’s experimentation leads to the other player experimenting
more later which, in turn, is valuable to the �rst player.”

As we will see, it is able to link strategic e�ects to di�erent kinds of projects:

Theorem 3 (The encouragement e�ect).
• For an increasing hazard rate, we observe a positive encouragement e�ect.
• For a constant hazard rate, we observe no encouragement e�ect.
• For a decreasing hazard rate, we observe a negative encouragement (discouragement)

e�ect.

For the proof see Appendix A.9.

The e�ect of the encouragement e�ect can go in two directions:
For an increasing hazard rate, the e�ect is called encouragement e�ect for a good reason.
Every e�ort a player spends now increases the e�ectiveness and, therefore, everyone’s e�ort
in the future. However, with a decreasing hazard rate, this e�ect is a negative encouragement
or discouragement e�ect: If a player spends more e�ort now and we do not succeed, we have
a lower belief about the chance of succeeding in the future and will therefore work less. This
leads to less e�ort, especially in the earlier periods.

The encouragement e�ect in the literature

The de�nition of the encouragement, as de�ned here, follows the idea of Bolton and Harris
(1999), is, however, de�ned di�erently. The reason for this is that the models are fundamen-
tally di�erent in several aspects. Their de�nition is that experimentation does continue after
the belief threshold under which a single agent would stop experimenting. We can not apply
their de�nition for two reasons: In this model, agents never stop experimenting before the
deadline or success. Furthermore, agents are not using Markovian strategies, and therefore
experimentation can increase, for example, due to being close to the deadline (see below).
However, the idea of encouragement in the sense of Bolton and Harris (1999) described as
“[A]n individual player may be encouraged to experiment more if, by so doing, she can bring

9For a comparison of our encouragement e�ect to di�erent e�ects in the literature, see the remark further
down.
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forward the time at which the information generated by the experimentation of others be-
comes available.“ is covered by the above de�nition.

Very close to the e�ect in this paper is the e�ect described as encouragement e�ect in Geor-
giadis (2014). In his paper, the projects described are, in the words of this paper, projects with
an increasing hazard rate, which explains why he always observes an encouragement e�ect
and no discouragement e�ect.

A similar but unrelated e�ect (called encouragement) can be found in Keller, Rady, and Cripps
(2005), which depends on allowing asymmetric strategies that allow for more e�cient equi-
libria. As this paper only considers symmetric strategies, we can not observe this e�ect
here.

Another way encouragement occurs if players can in�uence other players’ beliefs over the
project: For example, in Dong (2018), asymmetric information can lead to more e�ort exerted
by the better-informed player to increase the beliefs of the less-informed player. In Cetemen,
Hwang, and Kaya (2020), players do not learn about the project’s quality via experimentation
but through an exogenous feedback function. This feedback function is increasing in the
project’s quality and the combined past e�ort of all players, thus linking beliefs and e�orts.

However, even without the encouragement e�ect, the question of when to work is not triv-
ial. On the one hand, the discount rate incentivizes players to work earlier, while the convex
costs make spreading the e�ort over a larger time more e�cient. If players assume an in-
creasing hazard rate, we should expect them to work harder closer to the deadline, as the
e�ectiveness of their e�ort increases. But what does the optimal e�ort for a decreasing haz-
ard rate look like? From the example depicted in Figure 1, we already get a good idea of what
the typical optimal e�ort path might look like: At �rst, we have a decrease in e�ort. This is
due to the encouragement e�ect: Early on, the e�ectiveness of e�ort is high, but due to the
decreasing hazard rate, the success rate and the e�ort level decrease. However, later on, the
e�ort increases again, despite the e�ectiveness being at its lowest. Therefore, we show there
is a third e�ect at work: a delay of e�ort.

We have already seen from the previous section that, close to the deadline, delay of e�ort
dominates every other e�ect near the deadline, not only in the equilibrium but also in the
welfare-maximizing solution. While this shows that delay of e�ort is not a strategic e�ect,
it still has severe implications on working in teams: Delaying e�ort is not only expected but
also e�cient and bene�cial to the team. Therefore, team members and leaders should take
that into account when evaluating teamwork.
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What might be the reason for this behavior? This e�ect is independent of the discount rate,
as it also occurs with patient players (i.e., if r = 0, see Appendix E) and disappears without
a deadline (see, for example, Appendix D). Furthermore, we do not observe it in Bonatti and
Hörner (2011), a very similar model with linear instead of quadratic costs.10

Therefore, it is a consequence of convex costs and a deadline.

The intuition for this result is that players try to distribute e�ort as evenly as possible due
to the convex costs. But every time they invest e�ort without being successful, they have to
update their belief over the e�ort threshold upwards. Thus, they are smoothing their e�ort
again, now with a higher target e�ort level and less time to distribute, as the deadline is
closer.

But what is the intuition behind the result that delay of e�ort e�ect stronger than every other
e�ect when close to the deadline?
That an increasing hazard rate pushes e�ort even more towards the end is not surprising:
As they have invested e�ort before, they are getting a higher chance of success for the same
amount of e�ort than before. Thus, they are willing to spend more e�ort on it. Furthermore,
the encouragement e�ect also goes in the same direction, the more e�ort has been spent, the
more e�ort I am willing to spent.

However, for a decreasing hazard rate, these two e�ects are going in the opposite direction:
The encouragement e�ect is a discouragement e�ect, so e�ort should be lower. However, the
encouragement e�ect is forward-looking (i.e., my e�ort now a�ects others’ e�ort later) and is
getting weaker the closer one is to the deadline. At the deadlineT , it even vanishes entirely.
But the e�ect of decreasing hazard rates itself neither forward-looking nor a strategic e�ect:
The more work has been put into a project, the lower the e�ectiveness of e�ort (i.e., players
have a lower chance of success for the same amount of e�ort). However, this e�ectiveness
is bounded away from zero by Assumption 1. Now, in the limit t → T , the costs approach 0,
whereas the reward of success is constant. Thus, when being close enough to the deadline,
the e�ect of the decreasing hazard rate has to be overcome by the e�ect of the costs.

10In their model, the welfare-maximizing e�ort is as follows: As the chance of success decreases in the invested
e�ort, players invest the maximal amount of e�ort until the marginal bene�ts of e�ort are lower than the
marginal costs. After that point is reached, no e�ort is invested anymore.
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4.5. Certain Objectives

Let’s have a brief look at the model’s analysis without uncertain objectives, i.e., if the thresh-
old x̄ is common knowledge. This case is very similar to the model of Georgiadis (2017)
without monitoring. In this part of the paper, we will normalize c = 1

2 as in the paper men-
tioned above to make the comparison easier. The major di�erence is that rewards are paid
out as soon as the project is completed in our model. Whereas in his model, rewards are
paid out after a monitoring event (i.e., in this case, at the deadline T ). Therefore, there is no
incentive to complete the project early in his model, whereas, in this paper, there is a strong
incentive to complete the project as soon as possible.

Unfortunately, as Assumption 1 is not ful�lled anymore, as we have a probability mass point
of 1 at the known threshold and h(x) = 0; otherwise, most of the results obtained in this
work do not hold anymore. We know that multiple equilibria exist, for example, equilibria
in which no one works.

However, restricting ourselves to symmetric project-completing equilibria (i.e., xt = x̄ for
some t ≤ T ) and using Georgiadis (2017, Proposition 3), we can �nd a symmetric equilib-
rium:

Proposition 5 (Known E�ort Threshold).
If the e�ort threshold is known, the project is pro�table (i.e., the expected value for each
player is positive, or rx̄2 < 2n2), either

• constant e�ort is exerted between t = 0 and t∗ = T (for r = 0) or
• the e�ort is increasing between t = 0 and some t∗ ≤ T (for r > 0) and 0 otherwise:

ai =
rx̄

n

ert

ert∗ − 1
∀t ∈ [0, t∗]

t∗ = min

{
1
r

log

(
n

( √
2x̄
√
r

2n2 − x̄2r
+

2n
2n2 − x̄2r

))
,T

}
The proof splits the problem into two parts: the optimal e�ort allocation, which has already
been solved by Georgiadis (2017, Section 5.1) and one of �nding the optimal t∗.

A brief discussion of the proof can be found in Appendix B.

Again, the equilibrium depicted is only one of many possible equilibria, but it shows two
important things: In our model, unlike in Georgiadis (2017), discounting, even under a known
e�ort threshold, might lead to early completion of the project. Furthermore, with a known
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e�ort threshold, we only observe an increasing e�ort towards the end due to discounting
and usually not for very pro�table projects or late deadlines, as these tend to be completed
before the deadline.

Therefore, while we can see an increasing e�ort in many examples without uncertain objec-
tives, it is due to discounting and not the delay of e�ort described above.

5. Conclusion
In this paper, we have analyzed a team working together on a project where the individual
team members are unable to observe each others’ e�orts and have only a rough idea about
the amount of e�ort that will be needed to complete the project.

In this model, we can observe an encouragement e�ect and a delay of e�ort. The delay of
e�ort analyzed here is not a result of ine�cient behavior but a necessary consequence of the
deadline and convex costs, given the information structure. With the encouragement e�ect,
we are now able to link di�erent types of projects to strategic behavior.

Within this model, we can also analyze the in�uence of the model’s parameters on the be-
havior of the players and the social planner. However, this paper’s focus is to give a model
of uncertain objectives in a setting with strategic experimentation and the resulting encour-
agement e�ect and the delay of e�ort. Furthermore, we discuss the special cases of patient
players (i.e., when players have a discount rate of r = 0, in Appendix E), the e�ect of team
size (Appendix G) and of certain objectives (i.e., if the breakthrough-e�ort threshold x̄ is
known, in Appendix B) and give an example of a case in which uncertain objectives improve
the overall welfare (Appendix D.1).

This paper opens up questions for future research. For example, the question if the result
of Bonatti and Hörner (2011) that deadlines might improve welfare carries over to the case
of convex costs is still unanswered.11 Another interesting direction is the analysis of the
optimal compensation scheme for di�erent types of projects.

The e�ects observed in this model are not only able to explain frequently observed behavior
in the workplace like procrastination, they also advise on how to organize teamwork when
working on projects with a deadline: First, delaying e�ort isn’t necessarily bad for the team
and thus does not has to be sanctioned by the team leader. Furthermore, the encouragement

11Simulations (see Appendix F) suggest that improved welfare due to deadlines is a result of linear costs and
might not carry over to quadratic costs.
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e�ect shows us that working in teams is less e�cient when the project has (or is perceived
to have) a decreasing hazard rate. To avoid this, one should avoid giving projects with an
imminent change of failure to larger groups.
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Appendix
A. Proofs

A.1. Derivation of the Expected Utility

We know that the breakthrough e�ort is drawn from a distribution with the probability dis-
tribution function f and the cumulative distribution function F and that x(t) is by De�ni-
tion 1

x(t) =

t∫
0

ai(s) + a−i(s) ds

with a−i(s) =
∑
j,i

aj(s). The breakthrough time t̄ is the �rst time at which enough e�ort (i.e.,

the breakthrough e�ort) is accumulated:

t̄ = inf{t ≥ 0|x(t) ≥ x̄}.

The utility is then, given some �xed breakthrough time t̄

Ṽi(ai , t̄) = re
−rt̄ − r

t̄∫
0

e−rtcai(t)
2 dt .

Therefore, we know that the payo� part (re−rt̄ ) of the expected utility is equal to the distri-
bution of t̄ : f̄ (t). Let us now rewrite the PDF and CDF of t̄ as a distribution over x :

F̄ (t) = P[t ≥ t̄] = P[x(t) ≥ x̄] = F (x(t)) ⇒ f̄ (t) = f (x(t)) (ai(t) + a−i(t)) .

Therefore, the expected payo� is

Et̄

[
re−rt̄

]
= r

T∫
0

e−rt f (x(t)) (ai(t) + a−i(t)) dt . (6)

For the expected costs r
t̄∫

0
ertcai(t)

2 dt , we have to distinguish between two cases: One in

which the project is successful (i.e., t̄ < T ) and we pay until t̄ and one in which it is unsuc-
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cessful (t̄ ≥ T ) and we only pay until T . As we know that 1 − F̄ (∞) = P[t̄ = ∞] = P[x̄ >

x(∞)] = 1 − F (x(∞)) we get:

∫ ∞

0

∫ min{t ,T }

0
e−rsca(s)2 ds dF (x(t)) + (1 − F (x(∞))

∫ T

0
e−rsca(s)2 ds

=

∫ ∞

0

∫ ∞

0
1s<t1s<Te

−rsca(s)2 ds dF (x(t)) + (1 − F (x(∞))
∫ T

0
e−rsca(s)2 ds

Fubini’s
Theorem
=

∫ ∞

0

∫ ∞

0
1s<t1s<Te

−rsca(s)2 dF (x(t)) ds + (1 − F (x(∞))
∫ T

0
e−rsca(s)2 ds

=

∫ ∞

0
1s<Te

−rsca(s)2
∫ ∞

0
1s<t dF (x(t)) ds + (1 − F (x(∞))

∫ T

0
e−rsca(s)2 ds

=

∫ ∞

0
1s<Te

−rsca(s)2(1 − F (x(s)) ds

=

∫ T

0
e−rsca(s)2(1 − F (x(s)) ds . (7)

If we add the expected payo� (Equation (6)) and the expected costs (Equation (7)), we get the
expected utility, as stated in Equation (1):

Vi = r

T∫
0

e−rt (1 − F (x(t)))
©­­«
f (x(t))(

∑
j
aj(t))

1 − F (x(t))
− cai(t)

2ª®®¬ dt .

A.2. Theorem 1 (Optimal E�ort)

Candidate Solution

Finding the best response ai of some player i to the strategies of the other players a−i in
the problem stated in Equation (2) is a discounted optimal control problem of the following
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form
H (x , λ, t) = f (x)(ai +

∑
j,i

aj) − ca
2
i (1 − F (x)) + λ(ai + a−i)

Ûx = ai +
∑
j,i

aj

x(0) = 0

λ(T ) = 0

ai ,x ∈ R+ ∀i

(8)

Using the Pontryagin maximum principle (Pontryagin, Boltyanskii, Gamkrelidze, and Mis-
chenko (1962)) in the version of Kamien and Schwartz (2012), we know that the necessary
conditions for a maximum are

∂H

∂a
= 0 (9)

∂H

∂x
= rλ − Ûλ (10)

∂H

∂λ
= Ûx (11)

λ(T )x(T ) = 0 ⇒ λ(T ) = 0 (12)

with the Hamiltonian (Equation (9)), the equation of motion for the state variable (Equa-
tion (10)), the equation of motion for the costate variable (Equation (11)) and the transver-
sality condition (Equation (12)) for x(T ) being free. In addition we can see that the optimal
control does not depend on the aj ’s of the other players but only on the sum a−i :=

∑
j,i

aj .

Therefore we get

ai =
f (x) + λ

2c (1 − F (x))
Ûλ = rλ − f ′(x)(ai + a−i) − ca

2
i f (x)

Ûx = ai + a−i

x(0) = 0, λ(T ) = 0

From here on, we only consider symmetric equilibria, therefore we can replacea−i by (n−1)ai .
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Hence, necessary conditions for a best response are:

ai =
f (x) + λ

2c (1 − F (x))
Ûλ = rλ − f ′(x)nai − ca

2
i f (x)

Ûx = nai

x(0) = 0, λ(T ) = 0.

Using ai we get

Ûλ = rλ − f ′(x)n

(
f (x) + λ

2c (1 − F (x))

)
− c

(
f (x) + λ

2c (1 − F (x))

)2
f (x)

Ûx = n

(
f (x) + λ

2c (1 − F (x))

)
x(0) = 0, λ(T ) = 0.

So, the equation of motion for the costate and its time derivative are

λ =
2c
n
(1 − F (x)) Ûx − f (x)

Ûλ =
2c
n
(1 − F (x)) Üx −

2c
n
f (x) Ûx2 − f ′(x) Ûx

Using this, the necessary conditions simplify to the following boundary value problem:

(1 − F (x)) Üx = −
nr

2c
f (x) −

1
2n

f (x) Ûx2 + f (x) Ûx2 + r (1 − F (x)) Ûx

x(0) = 0

λ(T ) =
2c
n
(1 − F (xT )) ÛxT − f (xT ) = 0

Introducing the hazard rate h(x) := f (x)
1−F (x) , we have necessary conditions for Equation (2)

Üx = −
rn

2c
h(x) +

2n − 1
2n

h(x) Ûx2 + r Ûx

x(0) = 0

ÛxT =
n

2c
h(xT )

(13)
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Or, in terms of the individual e�ort, i.e., using that Ûx = na and Üx = n Ûa:

Ûa = −
r

2c
h(x) +

2n − 1
2

h(x)a2 + ra

aT =
1
2c
h(xT )

(14)

which is a non-linear boundary value problem of the second order.

However, a solution to this problem might not exist, and even if it exists, it might not be
unique. The following lemma shows that it does exist uniquely.

Lemma 2 (Existence and Uniqueness of the Solution to the Initial Value Problem). A solution
to the initial value problem from Equation (13) (and therefore also for Equation (14)) exists
and is unique.

Proof. As ai : [0,T ] → R+ is continuous and maps from a compact space to a metric space,
we know that it is bounded. Therefore, r

2ch(x) +
2n−1

2n h(x)a2 − ra is Lipschitz-continuous in

(a,x) as a is bounded (and therefore also a2), x(t) =
t∫

0
na(s) ds and x0 = 0 andh(x) is bounded

due to Assumption 1. Thus (by Picard-Lindelöf), we know that a unique solution to the initial
value problem for ai exists.

As x(t) =
t∫

0
na(s) ds and x0 = 0 and a exists and is unique, x(t) also exists uniquely. �

This does not mean that the Nash equilibrium exists. The candidate solution might not be a
global maximizer to the problem (i.e., the conditions in Equation (14) might not be su�cient).
Furthermore, even if Equation (14) represents a Nash equilibrium, there might be other Nash
equilibria. There could be, for example, boundary arcs or other solutions that might not be
found by the Pontryagin maximum principle.

Therefore, we have to show su�ciency and uniqueness of the solution.

Su�iciency and uniqueness of the solution

To do that, we �rst show that our optimal control problem has at least one global maximizer
via a Tonelli-type existence proof. Then, we show that every maximizer has to be a Pontrya-
gin extremal, i.e., will be found by the Pontryagin maximum principle. Thus we know that
the candidate solution is the only maximum as the candidate solution is unique.
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To show the existence, we use a Tonelli-type existence theorem. For convenience, we use
the version from Torres (2004), Theorem 10, as we are using results from this paper later on.

Lemma 3 (Existence of a Global Maximizer). The maximization problem, as stated in Equa-
tion (2), has an absolute maximum in the space of the control.

Proof. Following Torres (2004), we have to show that the problem, to have a global minimum,
has to satisfy Coercivity and Convexity.

Following the notation of the paper, −L(t ,x ,a) = −
(
f (x)(ai +

∑
j,i

aj) − ca
2
i (1 − F (x))

)
is the

Lagrangian of our problem from Equation (8) multiplied with −1 to transform the maximiza-
tion problem into a minimization problem and φ(t ,x ,a) = ai +

∑
j,i

aj is the evolution of the

state.

Then we know that a global maximizer always exists if the following conditions exist for all
(t ,x ,a):

Coercivity: There exists a function θ : R+ → R, bounded below, such that:

lim
r−>+∞

θ (r )

r
= +∞,

−L(t ,x ,a) ≥ θ (φ(t ,x ,a)),

lim
ai−>+∞

φ(t ,x ,a)) = +∞.

As φ(t ,x ,a)) = ai +
∑
j,i

aj is linear in ai , the last condition is ful�lled. Now, we have to show

that there exists a function θ that ful�lls the other two conditions.

−L(t ,x ,a) = −

(
f (x)(ai +

∑
j,i

aj) − ca
2
i (1 − F (x))

)
= ca2

i (1 − F (x)) − f (x)(ai +
∑
j,i

aj) is, as we

know from Assumption 1 that f (x) is bounded above and 1 − F (x) below, bounded and we
can always �nd a θ (), s.t. θ (ai) ≤ −L(t ,x ,a) and lim

r−>+∞

θ (r )
r = +∞.12

Convexity: −L(t ,x ,a) = −
(
f (x)(ai +

∑
j,i

aj) − ca
2
i (1 − F (x))

)
and the evolution of the state

φ(t ,x ,a) = ai + a−i both have to be convex in ai .13

12For example θ (r ) = αr 2 − βr − γ with α ≤ c(1 − F−), β ≥ f + and γ > f +a−i with f + being the upper bound
of f and F− the lower bound of F ful�lls the conditions.

13For existence, we do not need global convexity or convexity in the state.
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We have assumed that c > 0 and that f (x) > 0, F (x) < 1 follows directly from Assumption 1.
Thus L(t ,x ,a) is concave in ai (and −L(t ,x ,a) convex in ai ). Furthermore, φ(t ,x ,a) is linear
in ai and therefore also convex.

Thus, as Convexity and Coercivity are given, we know that our optimal control problem has
a global maximizer. �

However, this does not ensure that we can �nd this maximizer using the Pontryagin max-
imum principle. For example, we might have singular arcs or upper or lower boundary
arcs.14

We establish that the maximizer we found is, in fact, the global maximizer by using the main
result of Torres (2004) (Theorem 13 and Corollary 4):

Lemma 4 (Maximizers are Pontryagin extremals). All maximizers of the problem as stated
in Equation (8) are Pontryagin extremals.

Proof. Using Torres (2004) Corollary 4, we know that Coercivity (which we have shown in
Lemma 3) and the following conditions imply that all maximizers are found be the Pontryagin
maximum principle, if there exist constants k1 > 0 and k2 such that����∂L∂t ���� ≤ k1 |L| + k2,

����∂L∂x ���� ≤ k1 |L| + k2,����∂φ∂t ���� ≤ k1 |φ | + k2,

����∂φai∂x ���� ≤ k1 |φai | + k2.

The �rst inequality is trivially ful�lled. as L does not depend on t . The second inequality is
full�lled, as h(x) and therefore also f (x) are continuously di�erentiable (Assumption 1). The
third inequality is ful�lled, as φ does not depend on t and, as φ (and thus φai ) is independent
of x , the last inquality is also ful�lled. �

Thus, we know that every maximizer has to be found by the Pontryagin maximum principle
and that at least one global maximizer exists. Furthermore, we know that Equation (14) is
the solution found by the Pontryagin maximum principle and that it is the unique solution
to the Pontryagin maximum principle. Therefore, the following corollary follows.

14We would have, for example, a lower boundary arc if a player would stop working at some point in time.
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Corollary (Su�ciency and uniqueness). The solution to Equation (14) gives us the unique
global maximizer to the optimal control problem in Equation (8) and, therefore, the unique
symmetric Nash equilibrium.

Thus we know that the initial value problem describes the only symmetric Nash equilibrium
in pure strategies in Equation (13).

A.3. Proposition 1 (Increasing E�ort)

Proof. Non-decreasing hazard rates
Assume your e�ort is decreasing at some point t1, i.e., Ûa1 < 0. From Theorem 2 we know
that there is a t3 close to T , such that Ûa3 > 0. Therefore, due to continuity of a there exists a
t2 such that t1 ≤ t2 ≤ t3 with Ûa2 ≥ 0 and a2 ≤ a1. As we have a non-decreasing hazard rate
we know that h(x2) ≥ h(x1). Thus, we have for r , 0:

Ûa1 < 0

⇔
2n − 1

2
h(x1)a

2
1 + ra1 −

r

2c
h(x1) < 0

r≥0 and a2≤a1
==========⇒

2n − 1
2

h(x1)a
2
1 + ra2 −

r

2c
h(x1) < 0

a2≤a1
====⇒

(
2n − 1

2
a2

2 −
r

2c

)
h(x1) + ra2 < 0

h(x2)≥h(x1),h(x1)≥0,r>0 and a2>0
========================⇒

(
2n − 1

2
a2

2 −
r

2c

)
h(x2) + ra2 < 0

⇒
2n − 1

2
h(x2)a

2
2 + ra2 −

r

2c
h(x2) < 0

⇔ Ûa2 < 0 Contradiction

r=0
For r = 0 Ûa > 0 results trivially from Theorem 1, as 2n−1

2 h(x)a2 ≥ 0 �

A.4. Lemma 1 (Asymmetric Equilibria)

Proof. Assume there is an asymmetric equilibrium that is welfare maximizing. Then ∃i, t , j :
ai(t) > aj(t). However, it would be possible to improve welfare by setting a new a∗i (t) and
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a∗j (t) as follows: a∗i (t) = a∗j (t) =
ai (t)+ai (t)

2 as this does not change the overall e�ort (and there-
fore the chance of success) but reduces, due to the quadratic costs, the combined expected
costs of the project. Therefore, an asymmetric equilibrium can never be welfare maximiz-
ing. �

A.5. Proposition 2 (Social Planner)

Applying similar methods as in Appendix A.2, we get the welfare-maximizing cumulative
e�ort:

Üx = −
rn2

2c
h(x) +

1
2
h(x) Ûx2 + r Ûx

x(0) = 0,

ÛxT =
n2

2c
h(xT )

Or, in terms of instantaneous e�ort a:

Ûa =
1
2
h(x)a2 + ra −

nr

2c
h(x)

which reaches aT = n
2ch(xT ) at time T .

The properties derived in Lemma 3 and Lemma 4 also apply to the solution of the social
planner’s problem (Proposition 2).

A.6. Theorem 2 (Last-minute Rush)

To prove Theorem 2, we use continuity of x to show that the negative part of Ûa vanishes near
the deadline and is therefore strictly positive.

Proof. As h(x(t)) is continuous in x , it is also continuous in t . We also know from Theorem 1
that a(t) is continuous in t and that it satis�es (see Equation (14))

Ûa = −
r

2c
h(x) +

2n − 1
2

h(x)a2 + ra, a(T ) =
1
2c
h(x(T ))

⇔ Ûa =
2n − 1

2
h(x)a2 − r

(
1
2c
h(x) − a

)
, a(T ) =

1
2c
h(x(T ))
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As a(t) and h(x(t)) are continuous in t .

lim
t→T
(

1
2c
h(x(t)) − a(t)) → (

1
2c
h(x(T )) − a(T )) = 0

Furthermore, as n > 1
2 , h(x(t)) > 0, a(t) > 0 we know that:

lim
t→T

2n − 1
2

h(x(t))a(t)2 → ϵ > 0

Therefore lim
t→T
Ûa > 0, and thus there exists an δ in which Ûa(t) > 0 for all [T − δ ,T ] �

A.7. Proposition 3

Proof. (a):
This follows directly from the de�nition of the welfare-maximizing solution. Assume there is
an equilibrium path on which the cumulative e�ort is higher than on the welfare-maximizing
path for the �rst time at t1. Then a player can unilaterally spend some ϵ e�ort less at time t1
and, if the cumulative e�ort on the equilibrium path is ever below the welfare-maximizing
path, spend ϵ more at that point in time (or never, if the e�ort on the equilibrium path is
always higher).

Then, due to the de�nition of the welfare-maximizing solution, the di�erence in welfare is
positive. As she has moved some spending from an earlier point in time to a later point in
time, she is better o� than all other players.

Thus, her deviation is pro�table for her, and therefore this path can not be an equilibrium
path.

(b):
Part 1: This is a direct result of part (a). Proof by contradiction: If there is a t ′: ∀t ∈ [0, t ′]:
at > a∗t then xt > x∗t ∀t ∈ [0, t ′], which is a contradiction to part (a).

Part 2 (might be overtaken): From looking at Figures 2 and 3, we can see that the instanta-
neous welfare-maximizing e�ort a∗might be lower than the instantaneous equilibrium e�ort
a at some point. In the �gures, one can see the equilibrium and welfare-maximizing e�ort
side-by-side. For n = 2 and n = 3, one can see that welfare-maximizing e�ort starts much
higher but declines quickly towards the end. With two players, the instantaneous e�ort at
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t = 0 is below 0.2 in the equilibrium, whereas it is close to 0.3 in the welfare-maximizing solu-
tion. However, toward the end, the equilibrium e�ort has overtaken the welfare-maximizing
solution (at t = T ). The equilibrium e�ort is above 0.3, whereas the welfare-maximizing
solution is below 0.2.

(c):
This is easy to see from Theorem 1 and Proposition 2 that

aT =
1
2c
h(xT ) ≤ a∗T =

n

2c
h(x∗T )

as x∗T ≥ xT , n ≥ 1 and h(·) is non-decreasing. �

A.8. Free-Riding

We use the best responses from Appendix A.2 to show that

∂a∗i (·)

∂a−i(t)
≤ 0

everywhere.

Proof.

(9) ⇔ ai(t) =
f (x(t)) + λ

2c (1 − F (x(t)))
⇔ λ = 2cai(t) (1 − F (x(t))) − f (x(t))

⇒ Ûλ = 2c (1 − F (x(t))) Ûai(t) − Ûx(t) (2cai(t)f (x(t)) + f ′(x(t)))

10⇒ 2c (1 − F (x(t))) Ûai(t) − 2c f (x(t))ai(t)2 − 2c f (x(t))ai(t)a−i(t) − f (x(t))ai(t) − f (x(t))a−i(t)

11⇒ Ûλ = 2rcai(t) (1 − F (x(t)))ai(t) − f (x(t))r − f ′(x(t))ai(t) − f ′(x(t))a−i(t) − cai(t)
2 f (x(t))

⇒ (1 − r ) 2c (1 − F (x(t)))ai(t) − c f ai(t)2 = −f (x(t))r + 2c f (x(t))ai(t)a−i(t)

⇔ 2h(x(t))ai(t) − a2
i − 2ai(t)a−i(t) = −

r

c

Solving for ai(·) and taking the partial derivative gives:

∂a∗i (·)

∂a−i(t)
=

(a−i(t) − h(x))√
c
r + (a−i(t) − h(x))

2
− 1
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Which is always negative, as long as c > 0 and (1 − r )h(x(t)) , a−i(t) and 0 otherwise.
Therefore, we always have a free-riding e�ect. �

A.9. Theorem 3 (Encouragement E�ect)

Proof. Using the best response a∗i (·) from Appendix A.8 and taking the partial derivative with
respect to x(t) yields:

∂a∗i (·)

∂x(t)
=

(h(x(t)) − a−i(t))h
′(x(t))√

r
c − 2a−i(t)h(x(t)) + h(x(t))2 + a−i(t)2

+ h′(x(t))

= h′(x(t))
©­­«

h(x(t)) − a−i(t)√
r
c + (h(x(t)) − a−i(t))

2
+ 1

ª®®¬
Which is, for h′(x(t)) = 0 (i.e., a constant hazard rate) always 0 and, if c > 0 and h(x(t)) ,

a−i(t) for h′(x(t)) > 0 positive and for h′(x(t)) < 0 always negative. �

B. Certain Objectives
First, before showing the proof for Proposition 5, let me illustrate the main di�erence between
Georgiadis (2017) model without monitoring and this model with certain objectives with an
example.

Example. Assume that the costs are low enough, s.t. (abusing the notation of c(·)): c
( x̄
n

)
≤

1− e−rT . Then the losses due to delaying the reward untilT are higher then the highest possible
costs that can occur in the symmetric equilibrium.

Let us compare the utility from getting the work done at t = 0: V0 = 1 − c
( x̄
n

)
and from getting

the work done at t = T : VT = e−rT − cT where cT are some non-negative costs. Then we know
that:

V0 = 1 − c
(
x̄

n

)
> e−rT − cT = VT

Completing the project at t = 0 is strictly better (but not necessarily optimal). Therefore, working
until the end can never be optimal, whereas in Georgiadis (2017) it is always better to work until
the deadline.
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Proof: Proposition 5. The solution to the case of r = 0 is trivial: x̄ is distributed evenly be-
tween t = 0 and T .

The second case is less obvious, but the problem can be split into two problems: one of the
optimal e�ort allocation, which has been solved by Georgiadis (2017) and one of �nding the
optimal t∗ to �nish the project.

The solution to the �rst part, following Georgiadis (2017), is that the players will choose
e�orts such that their discounted marginal costs are constant, i.e., ai = rx̄

n
er t

er t
∗
−1 .

The solution to the second part is an optimization problem, in which we maximize the ex-
pected discounted playo� of the players, given that the project is pro�table, i.e. rx̄2 < 2n2:

max
t ′

e−rt
′

−
rx̄2

2n2
1

ert ′ − 1

⇒t ′ =
1
r

log

(
n

( √
2x̄
√
r

2n2 − x̄2r
+

2n
2n2 − x̄2r

))

Finding the maximum and verifying that it is a maximum can be done by simple calculations.
Furthermore, deviations from this t∗ can never be pro�table in the symmetric equilibrium,
as one would either work earlier without moving the project’s completion or is moving t∗

back, as it would lower your payo�.

Now, we can see that the stopping time is t∗ = min{t ′,T }. �

C. The Breakthrough-E�ort Distribution
The most important characteristic of a project in this model is the “breakthrough-e�ort distri-
bution” or, in other words, how much e�ort one has to spend for a certain chance of success,
given the e�ort that has been spent by the team in the past. Therefore, this distribution
describes how likely every possible e�ort threshold is at the project’s present stage. If the
player thinks �nding a cure for a disease costs around 100 billion sta�-hours of research, she
could assume some normal distribution around 100 billion. If I am sure I lost my keys in my
apartment (again) but have no idea where they could be, assuming a uniform distribution
over every room in my apartment seems reasonable.
In this section, we are looking at three classes of distributions and how they can be inter-
preted in the context of the model. The distributions will be denoted by their hazard rates
h(x(t)) := f (x(t))

1−F (x(t)) , which describes the e�ect of past e�ort on the e�ectiveness of current
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e�ort, or, in other words, the probability that the project will be successful now, given that
it was not successful so far.

Example 1 (Constant hazard rate). The �rst type of distribution has a constant hazard rate,
i.e., the exponential distribution (F (x) = 1−e−λx with a rate parameter λ > 0). This distribution
conveys the idea that the chance of success only depends on the current e�ort, and past e�ort
does not matter at all. For example, if trying to roll a six on a dice: The chance of success is
independent of prior dice rolls.

Example 2 (Decreasing hazard rate). A variation of the exponential distribution is an in-
complete exponential distribution (i.e., an exponential distribution with a probability mass at
in�nity).15 Although technically a distribution with a decreasing hazard rate, the intuition is
similar to the memoryless distribution example: The probability distribution itself is memory-
less. However, there is a chance of failure: As time proceeds, the expected probability of failure is
updated and therefore increases in the e�ort already spent. A popular example of a decreasing
hazard rate is a search model, similar to Keller, Rady, and Cripps (2005), where you search at
the most likely places �rst or investments into R&D: the more you invest without success, the
higher is your belief that there is no solution to the problem.

Example 3 (Increasing hazard rate). The last example is increasing hazard rates (e.g., when the
breakthrough e�ort is distributed uniformly on some interval). Possible applications are projects
with a strong learning-by-doing e�ect and projects where the success in a certain period depends
on the cumulative e�ort, not on current e�ort.16 For example, a legal team is trying to �nd a
particular �le in a room full of documents.

For more examples, see Section 2 in Khan and Stinchcombe (2015), which provides an overview
of the meaning of success probability distributions, their hazard rates, and their relations to
di�erent projects.

Although all examples in this paper will be from one of the three classes, the results also hold
for general distributions.

15Using this distribution in this model yields us a model very similar to the so-called good news bandit mod-
els. One example is Bonatti and Hörner’s (2011) benchmark model; the only di�erence being that we use
quadratic instead of linear costs.

16One example is Georgiadis (2014). In his model, the uncertainty is about the e�ect of e�ort and not the
threshold, but this is just a di�erent way to model uncertainty about the relationship between e�ort spent
and success. One can, therefore, generate a very similar model in the framework presented by choosing the
appropriate breakthrough e�ort distribution, which would have an increasing hazard rate.
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C.1. Stochastic project progress

A simple example how a add stochastic project progress is to add noise ε to the e�ectiveness
of the players’ e�ort:

x ≤

t ′∫
0

n∑
i=1
((1 + ε)ai(t)) dt

From this, one can derive a new "breakthrough-e�ort" distribution (analogously to Appendix A.1).
As long as this distribution ful�lls the conditions in Assumption 1, all results in the paper
still hold.

In the example above, the "noisy" breakthrough-e�ort distribution ful�lls the conditions
if the original breakthrough-e�ort distribution (without stochastic project progress) ful�lls
them.

This is not true for general types of stochastic project progress. Even more so, every stochas-
tic project progress which does not ful�ll a "no-e�ort no-progress" condition does result in
a continuous or bounded hazard rate and thus violates Assumption 1.

D. Constant Hazard Rate
Let us have a closer look at the case of constant hazard rates, i.e., the exponential distribution
(F (x) = 1 − e−λx with a rate parameter λ > 0). This distribution conveys the idea that the
chance of success only depends on the current e�ort, and past e�ort does not matter at all.
For example, if trying to roll a six on a dice: The chance of success is independent of prior
dice rolls.

For the exponential distribution, the solution from Theorem 1 reduces to:

Ûa =
2n − 1

2
λa2 + ra −

r

2c
λ

aT =
1
2c
λ

(15)

which has the following explicit solution:
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a(t) =

λ

(
e
(t−T )
√
cr (cr+λ2(2n−1))

c + 1

) (
λ2(2n − 1) + cr −

√
cr (cr + λ2(2n − 1))

)
+ 2

√
cr (cr + λ2(2n − 1))

2c (cr + λ2(2n − 1))

((
1 − 2cr+λ2(2n−1)

2
√
cr (cr+λ2(2n−1))

)
e
(t−T )
√
cr (cr+λ2(2n−1))

c +
2cr+λ2(2n−1)

2
√
cr (cr+λ2(2n−1))

+ 1

)
with λ being the rate parameter of the exponential distribution.

The welfare-maximizing e�ort has the following explicit solution

a(t) =

λne
−T

√
r
(
λ2n
c +r

) ((
r −

√
r
(
λ2n
c + r

))
e
t
√
r
(
λ2n
c +r

)
−

(√
r
(
λ2n
c + r

)
+ r

)
e
T
√
r
(
λ2n
c +r

) )
λ2n

(
e
(t−T )

√
r
(
λ2n
c +r

)
− 1

)
+ 2cr

(
e
(t−T )

√
r
(
λ2n
c +r

)
− 1

)
− 2

√
cr (cr + λ2n)

(
e
(t−T )

√
r
(
λ2n
c +r

)
+ 1

)

with λ being the rate parameter of the exponential distribution.

Given this solution, some observations about this class of distributions can already be made:
Independent of the number of players (and the discount rate), the individual e�ort right
before the deadline is always the same in the equilibrium. Furthermore, we can see that the
individual e�ort decreases in the number of players, although the reward for completion for
each player is independent of the number of players.

Furthermore, in this example, we can directly compare the non-cooperative equilibrium and
the socially optimal e�ort. It turns out that in this case, the socially optimal e�ort is always
higher than the equilibrium e�ort.

As we have no encouragement e�ect (only pure free-riding), it is clear that the e�ect at work
here is delay of e�ort. Furthermore, without a deadline (i.e., T = ∞), the e�ort would be
constant.17 However, if we introduce a deadline, this changes, and we see an increasing
e�ort.

17To see this, we can compare the problem at t0 = 0 and any other time t : The only di�erences between these
two problems are the past time t and the e�ort already exerted x(t). As t in the past does not in�uence the
best response now, the time left is the same and, due to the properties of the exponential distribution, x(t)
has no e�ect on the beliefs about the success, the problems we are facing at t0 and t are the same. Therefore,
assuming we also have a unique best response, the continuation strategies at t0 and t are the same for every
t , i.e., players exert a constant e�ort.
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Therefore, we can see from this example that delay of e�ort is a direct consequence of the
deadline.

D.1. Welfare Improvement due to Uncertain Objectives

While it is, in general, bene�cial to know the objectives, there are examples in which an
uncertain objective improves welfare. One is given in Figure 4, in which we have two patient
players, and x̄ is with 80% 0.9 and with 20% 1.1 and a deadline T = 1. It is, therefore, always
bene�cial for the team to complete the project.

Projects and team dynamics.

0.2 0.4 0.6 0.8 1.0
t0.0

0.2

0.4

0.6

0.8

1.0

a

Uncertain objectives

Full info.: bad project

Full info.: good project

Figure 4: Full information vs uncertain objectives

However, under full information and in the “bad“ case, there are two symmetric Nash equi-
libria. A good one, in which both players work, and a bad one in which both players do
nothing. Unfortunately, the “good“ equilibrium is not robust, as it does not ful�ll the ”pri-
vate feasibility” condition (see Myatt and Wallace (2008) for a related model). However, in
the uncertain objective case, the only symmetric Nash equilibrium is depicted by the blue
line.
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E. Patient Players
So far, we have only considered the problem in which players are impatient. For patient
players (r = 0), the solution from Theorem 1 simpli�es to

Ûa =
2n − 1

2
h(x)a2

aT =
1
2c
h(xT )

Example 4 (Constant Hazard Rate). For the exponential distribution with rate parameter λ
and r = 0, the solution from Theorem 1 reduces to:

x(t) =
2λ(log(2c + (2n − 1)T ) − log(2c + (2n − 1)(T − t)))

2n − 1

which is clearly increasing in t.

As we know that h(x) and a are always positive, the following Proposition 6 is an obvious
result:

Proposition 6. The equilibrium e�ort of patient players (i.e. r = 0) is increasing everywhere,
concave for decreasing hazard rates and convex for increasing hazard rates.

It is not surprising that, without an incentive to work early, we observe even more delay of
e�ort, i.e., e�ort is shifted towards the end.

F. Deadlines
We have already seen that deadlines induce delay of e�ort, i.e., an accumulation of e�ort
shortly before the deadline. But is it possible to improve welfare by a deadline? Given that
we only consider rational individuals, one would not expect a deadline to be bene�cial if the
hazard rate of the breakthrough-e�ort distribution is constant or even increasing. Now, Bon-
atti and Hörner (2011) have shown that, in their setup (i.e., with a speci�c type of decreasing
hazard rates and linear costs), there is always a welfare-improving deadline.

However, with quadratic costs, we could not identify any situation in which deadlines im-
prove welfare. Simulations suggest that the welfare-maximizing deadline is always the least
restrictive (i.e., the deadline that allows the most time to complete the task). This is probably
due to the convex costs, making it cheaper to spend e�ort over a longer time.
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Figure 5: E�ect of deadlines on e�orts
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Figure 6: E�ect of deadlines on welfare

In Figure 5, you can see that the e�orts behave as expected: Shorter deadlines lead to overall
higher e�orts and, given a short enough deadline, we can even prevent the decrease of e�ort
early on. However, the e�ect of a (shorter) deadline on the utility (and therefore the welfare)
is, at least in simulations, always negative, as shown in the example in Figure 6.18

The question of whether deadlines can improve welfare is, therefore, still open. However,
simulations suggest that (shorter) deadlines are never bene�cial in this model.

G. The E�ect of Team Size
So far, we have assumed a �xed number of players. What happens if the number of players
changes?

Given that the reward from successful completion of the project is modeled as non-rivalrous,
it is not surprising that the welfare increases in the number of players.

To show this, remember that, in this model, players never over-exert in the equilibrium. Let’s
start by n = 1→ n = 2: Assume there was a 2-player equilibrium in which the players were
worse o� than in the n = 1 case. Then, each player had a pro�table deviation of playing the
n = 1 player strategy, having exactly the same costs as in the n = 1 player case and a strictly
higher cumulative e�ort x(t) at every point in time and therefore at least marginally higher
chances of winning before time t .19 As the same argument also works for N → N + 1, we
know that welfare strictly increases in the number of players.

18Which again uses an incomplete exponential distribution as in Bonatti and Hörner (2011).
19Strictly higher cumulative e�ort since the other player will never exert 0 e�ort as shown before. Strictly

higher chances of winning before time t is due to Assumption 1.
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But how about individual e�orts? We know that there are two strategic e�ects at work,
free-riding and the encouragement e�ect.

With a constant hazard rate, we only have free-riding and no encouragement e�ect. Thus,
every individual will work less. As the encouragement e�ect only depends on the cumula-
tive e�ort, we can also expect the same e�ect with a decreasing hazard rate, which we can
observe in the example of an incomplete exponential distribution in Figure 7 and Figure 8.
Here we can see the lower individual e�orts and higher cumulative e�orts for larger team
sizes. For the increasing hazard rate, however, individual e�orts can be higher as long as the
encouragement e�ect is larger than free-riding.

0 2 4 6 8

t0.00

0.05

0.10

0.15

0.20

0.25
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T= 8 , c= 1 , Α= 1 , Β= 0.9 , r= 0.1

n= 1

n= 2

n= 3

n= 4

Figure 7: Individual e�ort for di�erent
team sizes

0 2 4 6 8

t0.0

0.5

1.0

1.5

2.0

2.5

3.0

x
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Figure 8: Cumulative e�ort for di�erent team
sizes

In the cases of (purely) increasing and decreasing hazard rates, the e�ects on individual ef-
forts are qualitatively simple. This result, unfortunately, it does not carry over to more gen-
eral hazard rates. Even for non-increasing and non-decreasing hazard rates, examples can be
found under which individual e�orts �rst increase, then decrease, and then increase again
and vice versa.
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